62 research outputs found

    Language Understanding for Text-based Games Using Deep Reinforcement Learning

    Get PDF
    In this paper, we consider the task of learning control policies for text-based games. In these games, all interactions in the virtual world are through text and the underlying state is not observed. The resulting language barrier makes such environments challenging for automatic game players. We employ a deep reinforcement learning framework to jointly learn state representations and action policies using game rewards as feedback. This framework enables us to map text descriptions into vector representations that capture the semantics of the game states. We evaluate our approach on two game worlds, comparing against baselines using bag-of-words and bag-of-bigrams for state representations. Our algorithm outperforms the baselines on both worlds demonstrating the importance of learning expressive representations.Comment: 11 pages, Appearing at EMNLP, 201

    Grounding Language for Transfer in Deep Reinforcement Learning

    Full text link
    In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.Comment: JAIR 201

    Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning

    Get PDF
    Most successful information extraction systems operate with access to a large collection of documents. In this work, we explore the task of acquiring and incorporating external evidence to improve extraction accuracy in domains where the amount of training data is scarce. This process entails issuing search queries, extraction from new sources and reconciliation of extracted values, which are repeated until sufficient evidence is collected. We approach the problem using a reinforcement learning framework where our model learns to select optimal actions based on contextual information. We employ a deep Q-network, trained to optimize a reward function that reflects extraction accuracy while penalizing extra effort. Our experiments on two databases -- of shooting incidents, and food adulteration cases -- demonstrate that our system significantly outperforms traditional extractors and a competitive meta-classifier baseline.Comment: Appearing in EMNLP 2016 (12 pages incl. supplementary material

    SemSup-XC: Semantic Supervision for Zero and Few-shot Extreme Classification

    Full text link
    Extreme classification (XC) involves predicting over large numbers of classes (thousands to millions), with real-world applications like news article classification and e-commerce product tagging. The zero-shot version of this task requires generalization to novel classes without additional supervision. In this paper, we develop SemSup-XC, a model that achieves state-of-the-art zero-shot and few-shot performance on three XC datasets derived from legal, e-commerce, and Wikipedia data. To develop SemSup-XC, we use automatically collected semantic class descriptions to represent classes and facilitate generalization through a novel hybrid matching module that matches input instances to class descriptions using a combination of semantic and lexical similarity. Trained with contrastive learning, SemSup-XC significantly outperforms baselines and establishes state-of-the-art performance on all three datasets considered, gaining up to 12 precision points on zero-shot and more than 10 precision points on one-shot tests, with similar gains for recall@10. Our ablation studies highlight the relative importance of our hybrid matching module and automatically collected class descriptions.Comment: Published at ICML 2023. V2: camera ready version at ICML 202
    corecore